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Percolation of clusters with a residence time in the bond definition: Integral equation theory
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We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-
Jones pair potential. A cluster definition is used according to which two particles are considered directly
connectedbonded at timet if they remain within a distance, the connectivity distance, during at least a time
of duration 7, the residence time. An integral equation for the corresponding pair connectedness function,
recently proposed by two of the authdi@hys. Rev. E61, R6067(2000], is solved using the orthogonal
polynomial approach developed by another of the authBhys. Rev. E55, 426 (1997]. We compare our
results with those obtained by molecular dynamics simulations.
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I. INTRODUCTION particle systems, sometimes a continuous description

The ideas of clustering and percolation have been exﬁ]""here particles Ca’; c(;jc::upy aQy point in Ia_ltc_:ont_lntuum ¢
ploited to explain numerous macroscopic properties in manyP1aS€ Space— IS needed 1o reach a more realisuc picture o

body systems and a wide class of problems has been studid® Phenomena under consideration. Within this context, the
using this approach. We can mention, among many other&oncept of connectivity has been generalized and adapted to

the insulator-conductor transitiofi], the glass transitions describe clustering and percolation in continuum systems.
[2,3] and the sol-gel transitiof#] observed in several mate- 1N€ main ideas have been established in the pioneering
rials, the behavior of supercooled waf&:6], aggregation WOrks of Hill [18] and Coniglioet al.[19]. Hill considers a
and agglutination phenomena in cells and biological macroPartition of the Whol_e system into subsystems of particles
molecules and organellé—9], the flow of fluids in porous (the clustersthat satisfy some linking properties. The con-

. . . ept of cluster is thus directly related to the idea of bonded
[nﬁdll%[1?—,]1}1ﬁa?r?gu;krzzgzg|ga§%§fu'rg tr:)ef tﬁ:;esgﬁlvgrrzzgairs. A bonded pair is a set of two particles that are linked

13-18 Th t of ivity bet th ticl by some direct mechanism. A cluster is then defined as a set
[13-15. The concept of connectivity between the particles ¢ 5 icles such that any pair of particles in the set is con-
of the system plays a central role in this type of description

. ‘nected through a path of bonded pairs. We call these clusters
Most of the efforts made in these areas are based on a 'att'GEhemical clusters” to distinguish them from the non-pair-

representation of the systems of interest. The relative simygnged clusters we have introduced in a previous W2ek

plicity of lattice models allows for a wide variety of treat- __ note, however, that this does not mean that clusters are
ments, which extend from almost heurisitl6] to quite rig-  necessarily formed through chemical bonding. A system is
orous[17]. said to be in a percolated configuration if it contains a cluster

Despite the ubiquity of the lattice representation and thenat spans the system.
contribution it has made to our understanding of many- From Hill's theory, we see that a connectivity criterion is
needed in order to decide whether two particles are bonded
or not. This connectivity criterion has to be defined in accord
*Also at Comision de Investigaciones Cientificas y Tecnoldgicaswith the phenomenon under stuf31-23. In the search for

de la Prov. de Buenos Aird€ICPBA), Argentina. stable atomic clusters, which mark the onset of a phase tran-
TPresent address: Instituto de Fisica de Liquidos y Sistemasition in a monatomic gas, Hill proposed a simple energetic
Biologicos (IFLYSIB), La Plata, Argentina. criterion: two particles are bonded if their relative kinetic
*Also at Instituto de Fisica de Liquidos y Sistemas Bioldgicosenergy is less than the negative of their relative potential
(IFLYSIB), La Plata, Argentina. energy[18]. However, this criterion is difficult to implement
Email address: vericat@iflysib.unlp.edu.ar from a theoretical point of viewsee Ref.[24] for a first
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attempt to tackle this problenand simpler criteria have been tion IV is devoted to the numerical results and a comparison
preferred. Thus, most of the theoretical studies on connectiwith our MD simulations. We finish with conclusions and a
ity and percolation in continuum systerntsee for example brief description of the implications of this generalized con-
Refs.[25-27)) were focused on the rather simple geometricalnectivity criterion on the study of gelation in weakly attrac-
connectivity criterion of Stillingef28]. Stillinger’s criterion  tive colloids.

states that two particles are bonded if they are separated by a

distance shorter than a given connectivity distadckn this Il. CHEMICAL CLUSTERS
case,d is an ad hoc parameter which must be chosen on
physical grounds. We summarize here the basic theory that we have devel-

The use of a geometrical criterion to decide whether twooped in | to describe the clustering and percolation for
particles are bonded might be meaningful in some applicachemical clusters with nonzero bond lifetime.
tions where the fact that two particles are close together at a For a system oN classical particles that interact through
given time is sufficient to infer the existence of a particle-a pair potentiab(r;,r;), we define a density correlation func-
particle bond. However, in any real experiment, a cluster angion p(r,,r,,p;,p,) that is N(N-1) times the probability

the particle-particle bonds that build it up need to last forgensity of finding two particles at the phase space configu-
some minimum period of time in order to be detected. Ex'rations(rl py) and(r,, p,), respectively:

amples where the finite value of the bond lifetime is of cru-

cial importance to the understanding of the clustering and N(N-1)
percolation phenomena include the formation of hydrogen p(r1,r2,P1,P2) = m
bonds in liquid and glassy wat§,29] and the viscoelastic ' T
sol-gel transitior{ 30]. N p2 N N
In a previous work31] (hereafter denoted ag kwo of us X H exp - Bgn H H
presented a generalized connectedness integral equation =1 =1 =
theory for continuum systems —and molecular dynamics xexp - ,sz(ri,rj)]drN‘zde‘z. (1)

(MD) simulations for the Lennard-Jones systd@0]— ) , _

where the finite lifetime of the particle-particle bonds wasHereh is Planck’s constant ard(N, V,T) the canonical par-
explicitly considered. In this generalization two particles aretition function of the system. Then, in the same spirit of Hill
considered bonded at tintaf they remain within a distance and Coniglioet al.[18,19], we separate expfu(r.r;)] into

d (the connectivity distangeat least during a period of time connecting(f) and blocking(*) parts,

of length 7 (the residence time This connectivity criterion _ V=t TP

allows us to detect bonds with different lifetimes by simply expl= Bulri,r)]= F1(rarpi,py) + £, 1, piopy) + 1.
setting 7 to any nonzero value. The clusters so obtained are 2
called “chemical clusters” to distinguish them from the .0 fi(r
physical clusters’{20] which have no need of bonded pairs that two particles in configuratiofr;.r;,p;.p;) are bonded,

° ?r?zt.solution of the integral equation derived from thisWe will - sometimes ~use the shorthand notation
X 9 qualic o f(ri,rj,pi,pj) =17, wherey can be either T or *. Substitu-
theory posed an important challenge since it involves convo-. )

lutions not only on the positions but also on the momenta opon of Eq.(2) in Eq. (1) yields

the particles. The form of the integral equation turned out to N(N - 1)

be mathematically equivalent to that used to study the struc- P(r1.72,P1,P2) = WEXF{— Bu(ry,ry)]
ture and thermodynamics of a model for nonpolar, polariz- ’ Y

i.1,Pi,Pp;) represents the basic probability density

able molecule$32,33. In this paper, we adapt the technique N p? .

of expansion in orthogonal polynomials, developed by one of X H exp - ﬁ;n > {H fi,jfk,l}

us in Ref.[33] (hereafter denoted as)lin the study of po- =1

larizable molecules, to solve the connectedness integral xdrN-2dpN-2, (3

equation at nonzero bond lifetime for the Lennard-Jones sys- ) ] )

tem. We compare the chemical-cluster pair correlation funchere the sum is c_arneg out over all possible arrangements
tion Genenl1,T») and the percolation line with MD simula- ©f products of functlonsfi‘j_andekJ. R

tions for the same system. The cluster pair correlation VW€ note that the functiong; andf;; can depend on the
function is proportional to the joint probability density of Mmomenta asTweII as on the positions of the two particles, but
finding two particleglabeled 1 and Rwithin the same clus- € Sum Offi]g and f;; must be momentum independent in
ter and at positions; andr,, respectively. The percolation ©rder to conform to Eq(2). Except for this last condition,

line in the temperature-density plane separates the phade fun_ct|onsfiT’j andf;; are otherwise arbitrary for thermo-

space into a nonpercolated regiéat low densities and a ~ dynamic purposes. Of course, we choose them in such a way

percolated regiotat high densities that the _deswe_d deflmtlon of bonded patrticles for chemical
The rest of the paper is organized as follows. In Sec. Il weFlUSters is achieved, i.e.,

summarize the generalized connectedness integral equation exg- Bu(ri,rpl], [ri0/<d Ots~

theory to treat nonzero bond lifetimes. In Sec. Il we presentf'(r;,r;,p;,p)) = b T ’

the expansion in orthogonal polynomials used to solve the

integral equation in the Percus-Yevick approximation. Sec- (4)

0, otherwise,
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f*( ) _1, |r|'](t)| <d at< T, (5) T(r ) C_I_(r )+ P
ri,r,p,pi= ) D1, - D1,
»1 PP exd- Bu(r,r)]-1, otherwise, 9 {M12P1P2 12:P1,P2 (27rmigT)3/2

i i iti iclésand X g ( )g'( )
wherer; ;(t) is the relative position of the particlésand] at exp ~ B5, - [C (r13.P1,P3)9 (52, Ps,P2
time t within the time interval[0,7]. We assume that
(ri,r;,pi,p;) is the configuration of the set &£0. We see Xdrzdps. (8

that in fact Eq.(2) is satisfied by Eqs(4) and(5). Equation To obtain a closed integral equation with H6) or Eq.
(4) states that tWOparthlesandj are bonded if they remaln (8), we need a closure relation betW®Tmrl,r2,pl,p2) and
separated by a distance shorter tiwaror at least a time  ¢t(y, r, n. p,). Here we will use the Percus-Yevick ap-
interval of length7. This coincides with our definition of proximationg(r,,r,)exf Bu(r,r»)]=1+N(ry,r,), where the
chemical clusteks. Time is explicitly introduced here by tak-tnction N(r,,r,) is the sum of the nodal diagrams in the
ing the sgt{r PN} as initial condltlc_Jns fot=0 and_solvmg expansion ofy(r¢,r,). Separation into connecting and block-
the equations of motion of thid particles under their mutual ing parts, g(f1,r,)=g"(r1,F,p1,P2)+g (r1,T2,p1,p,) and
interaction. Yl N e

In order to calculate; ;(t) exactly for anyt we must solve N(ry,r2) =NH(ry, T2, Py, p2) #N (M1, T2, Py, Po), yields
a many-body problem. An approximation to this can be ob- g'(r,r,,p1,p2) =[f (r1,r2p1.P2) + 197 (r1,r 2.1, P5)
tained by reducing the calculation to a two-body problem.

_of
This is done by using the potential of mean force C(ri,ra,p1,p2)]
v¥(r,ry)==In[g(r;,rj)]/ B [34], whereg(r;,r;) is the system +exf Bu(r1,r)19(r1,r ) (r,r2,p1,p2),
pair distribution function(PDF). In this way, r;;(t) is ob- (9)

tained in terms of just the initial values,rj,p;, andp;.
Each term in the integrand of E¢B) can be represented or, for a homogeneous system,
as a diagram consisting of two whigg ande, points,N-2 + g T
black g points and soméI- and f, connections except be- 9'(r12:p1,P2) =[f (r12P1,P2) + 11[g'(F12.P1.P2)
tween the white points. Here we take= exp[-8(p?/2m)]. - c'(rizp1p2)]
White points are not integrated over whereas black points are +
integrated over both their positions and momenta. All the +exd u(ri2) 19012t (12 P12
machinery normally used to handle standard diagrams in (10
’::rllassmal liquid theo_ry{32] can now be. extenQeq ,to treat Equation (6) joined with Eq. (9) or Eg. (8) joined with
ese new type of dla_grams. By foIIo_W|ng Comgllos recipe Eq(10) give a closed set of equations fgH(r,r,p,p,)-
to separate connecting and blocking parts in the PDF, From the functiorg'(r 1,15, py, p,) we define the pair cor-

9(r1,r2)=g'(r1,12,P1,P2)+g (r1,15,P1,P), e obtain an relation function for chemical clusters
Ornstein—Zernike-like integral equation fg(r,,r,,p1,p2), '

N + gchen{rlarZ):fp(rlvpl)p(rerz)gT(rlar2ap1ap2)dp1dp2-
9'(r,r2,P1,P2) =C'(rq,r2p1.P2)
(11

This function is the joint probability density of finding two
particles within the same chemical cluster at positionand
r,, respectively. Then the mean cluster s&g.,, and the
percolation density,, are calculated as

+ J p(rs, p3)CT(r 1,73,P1 p3)gT(r3, r2,P3,P2)

Xdr;dps. (6)

Here p(r1,py)p(r2,p2)g"(r1,12,p1,P2) is N(N-1) times the 1

joint probability density of finding two particles at positions Sehendp) =1+ ——— J QehendF1,F2)drdry, (12
r, andr, with momentap, andp,, respectively, and belong- (N-1)

ing to the same cluster, where the bonding criterion is given

by Egs.(4) and(5), while lim Sihenlp) = . (13
[
1
p(ry,py) = N_1 I p(r 1,7 2,p1,P2)dr 2dp;. (7) 1. SOLUTION OF THE INTEGRAL EQUATION

A. Equivalence with an integral equation for polarizable fluids

The functionc'(r,,r,,p1,p,) denotes the sum of all the non-  Our problem consists in solving E¢B) for g'(r15,p1,p2)
nodal diagrams in the diagrammatic expansion ofclosed by the connectedness Percus-Yevick reldfibnwith
g'(r1,r,,p1,p2). We recall here that a nodal diagram con-fT(ri,rJ—,pi,pj) andf’(r;,r;,p;,p;) given by Eqs(4) and(5).

tains at least one black point through which all paths bedn the closure relatioril0), g(r,) is the thermal PDF of the
tween the two white points pass. For a homogeneous systersystem. We consider here a Lennard-Jones fluid whose par-
we have ticles interact through the pair potential
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a\¥?_ (o) p P3
v(r)= 48{(;) - (?) } : (14 F'(k,pupo) = (2amigT)?2 f dpsexp{- Bﬁ}[f(k,pl,ps)
In this work we takeg(r,,) from the solution of the thermal +T'(k,p1,p3) E'(K,ps,p2) - (18
Ornstein—Zernike(OZ) equation in the Percus-Yevick ap-
proximation[32]. The closure given by the Percus-Yevick relatidy. (10)]

An equation mathematically equivalent to E@) has together with the conditiong}) and(5) yield
been previously solved in Il by one of us in the study of
nonpolar polarizable molecules. Explicitly, the equation con- c'(r12.p1,P2)
sidered there, which is a generalized OZ equation, relates the ot
fluid total correlation function (TCF) h(r 1Py, ) - {g(rlz) Y (”Z'pl’pZ)’T rd] <dDt<7,
=9(r 12,P1,P2) — 1 [with g(r15,p1,p,) the PDH and the direct (exd - Bu(rip)] = 1)y'(rizp1,p2),  otherwise.
correlation functionDCF) ¢(r15,P1,P2), (19

h(r12,p1,P2) = €(r12,P1,P2) The connectivity part of the PDF is then computed frgi
as

+p J f(ps)C(r 13.P1,P3)N(r 32, P3,P2)dr 3dp3,
g(rp) rt)|<dOts<r,

i -

(15 9'(r12:P1,P2) = {exp{— Bu(r1)]y'(r1p1,p2), otherwise.
wherep; denotes the instantaneous dipolar moment induced (20)
on moleculd by the remaining molecules of the system. The

function f(p) gives the instantaneous dipolar moment ther-The Fourier transform in Eq18) and its inverse are defined
mal distribution which, in I, is assumed to have a Gaussiaras

form
1 Bp2> T(k) = f dr f(r)e ik (21)
f(p) = ————zexp| - = |, 16 '
®) (Zwa/B)glzex% 2a (16
where« is the effective polarizability of the molecules.
We observe that Eq$8) and(15) are the same equation if f(r) = f dk F(k)ek . (22)
we identify h with g*, ¢ with c', the induced dipolar moment (2m)®

p; with the kinetic momentunp; and the polarizabilityx
with the particle massn. There are, however, some differ-
ences between the connectivity problem and the polarizabl
molecule problem described in Il. The form fip) does not
need to be Gaussian in Il; moreové(p) is coupled to the
TCF. Therefore, the value of the effective polarizability

The standard method for solving Ed48) and(19) is to
explicitly break out the angular dependence of all functions
8h the form of expansions in spherical harmonj8§]. The
general expansions for pair functions in real as well as in
transformed spaces are shown in the Appendix.

Introducing the expansion féy'(k,p;,p,) and the corre-
r%?)onding expansion fa@'(k,p;,p,), one finds that the OZ-
like equation in Fourier spadé&q. (18)] goes over into a set
of matrix equations for the respective coefficients,

connectivity problem, however, the equivalent ofp),
p(r,p)/p, is intrinsically Gaussian and independent of the
thermodynamic macrostate of the system.

Another difference between the connectivity problem here . ~ ~
and the problem described in Il is that our closure relation lerlgrf:f(k) =1 EI [%Tlr'gnma(k) +cfl'|‘§”m3(k)]ﬁf3“,‘g‘”m2(k).
must be complemented with the condition given by &. "33
This means that we have to calculate the path of a given pair (23
of molecules over a period of time In addition, the closures
are different. Here we consider the connectedness version of
Percus-Yevick whereas aalmost exact relation between
DCF and TCHvan Leeuwen-Groeneveld-De Bd&b] ex- To obtain a numerical solution for the set of equati®)s
act relation with approximate bridge functjois used in Il.  and(10) one needs the discrete versions of the expansion for

Nevertheless, these differences do not affect the genergfi(r p, p,) [Eqg. (A9)] and the quadratures for the coeffi-
method of solution developed in Il and we can apply thecientsy™M(r) [Eq. (A11)]; these are

B. Numerical procedure

same principle of expansions in orthogonal functions. Yl
Thus, following II, we start by reassigning the unknown . . L + ) ,
function to be the indirect correlation function v (niyigky ke j) = 47Tn n$| . Yiytgm (N Qny1, (11 Qn,1,12)
1,112:11:12)
T —qt _f
Y (r12,p1,P2) =9'(r12,p1,p2) = €'(r12,p1,P2),  (17) % Pllm(kl)Plzm(kz) T (24)

rather thang'(r,,,p;,p,), and rewriting Eq.(8) in Fourier
transform representation, and
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IO = S Wligwiwik)w(kw)
il,iz,kl,kz,jzl

X YT(riil!iZ! kl! k21j)Qn1|l(il)Qn2I2(i2)

<Py k) Pk (- D™ (). (25)

In Eq. (24), vp=1 andv,,,=2 for m>0. In Eq.(25), Gaussian
quadratures are being used, with the argunestanding for
t;=Bp?/2m, the ith root of LY(t), k for x,=cosé,, the kth

root of Py (x), andj for yj:cpos¢,-, the jth root of TNp(y),

whereLﬂzft), Py (X), andTy (y) are the associated Laguerre,

PHYSICAL REVIEW E 71, 031202(2009

Thus, for each set of valués,;»,p4,p,) we must solve the
differential equatior(29) with the initial conditions given by
Egs.(30) and (31). This problem can be put in a more ad-
equate form to be solved using the Runge-Kutta method:

Legendre, and Chebyshev polynomials, respectively, all of

orderN,; here the associated Legendre functidhg(x) are

normalized to 2. Thew are the corresponding Gaussian

weights,
wii) = {87 (6 (26)
w(k) = {(1 QP ()T, (27)
w(j) =Ny, (28)

where the prime denotes derivative.

The solution follows an iterative procedure. The prepara

tory stages of the calculation consist @f computing the
thermal PDFg(r,,) for the Lennard-Jones fluid over a suit-
able mesh using the Percus-Yevick equatianreducing the
momentum space to the discrete set of poimts;
=(p;, b, ¢j) with i k,j=1,2,... Ny, and(iii ) identifying the

subset of states —within all possible configurational state
(rq2,p1,p2) of a pair of particles— that correspond to a

bonded pair.

dr(t) _
T_S(t)’
ast) _
p =flr(v],
r()}=0="ri2
d
(o= T2 _=fe
ast| o
pm t:O—f[r(t—O)], (32
where
2
f(r) = 1 dg(r)+(r12p12)2(1 Xlz). 33

dr ( n_1)2r3
2
From the numerical solution of the equation of motion, we
construct a logical array(rip,Pa;ikj:P2ikj) Of dimension
seven whose value i®RUE if the configurational state of the

pair of particles corresponds to a bonded state, i.e4,(f)
<d Ot<r. If instead the conditiom5(t)<d Ot<r is not

2B

Sc,atisfied, therB(r2,P1; k. P2:i k) iS FALSE.

The iterative solution of Eqs(23) and (19) starts by

guessing the initial values of the coefficienﬁlrl‘;“mz(rlz).

The third preparatory step above is carried out as follows) "€Ns if B(F12,P1ik:P2i ;) 1S TRUE following Eq. (20) we
The relative distance;, between particles 1 and 2 and the take

momentap.; ;= (P, b1, $1j and Py j = (P2, Ok, Poj) are

made to run over all the mesh values and the reduced mo-

mentum spacégstep (ii)], respectively. Thus, for each set
(r12,P1ikj:P2ikj) taken as initial condition, we consider the
equation of motion of the two particles

mdr(t) _ weMrv] . L2

2 k]
2 ot or g[r(t)P

(29)

where r(t)=|r,(t)=ro(t)|, veTr(t)]=-kgTInglr(t)], and L
=|L|=]|r(t) X p(t)|=const. In the last equality we havet)
=r4(t)-r,(t) and p(t)=p1(t)—p,(t). Equation(29) must be
solved with the initial conditions

r) =|ry(t) —ro®l=o=ri—rof=re (30)
and
o t=0—|r1(t) Fo()]i=0= m m | o
=|P2_P2) _Pi (31)
m m m

if np=n,=1;=l,=m=0,

gl‘rnlnz(rlz) - {g(r12)v

12 0, otherwise.
(34)

If instead B(r12,P1; k. P2:ik;) iS FALSE then, following Eq.

(20), we take

912(r 1) = exf - Bu(r,)] 7|T1'|1;nm2(r12)-

1lom

(35

Knowing g,’rlrl‘;’g(rlz) and y[‘lr}g‘mz(rlz) for all the mesh points

and allowed indices, we can calculdsee Eqs(17) or (19)]
Ol AR(r12) = 9l A02(r 1) = i1 (36)
We now need to transform the coefficierq%r‘mZ(rlz) in
real space into coefficien"t‘sﬁlﬁ‘;”mz(k) in Fourier space. How-
ever, as we have mentioned, they are not themselves Fourier
transforms of each other. Thus, we have to assemble the
complete function first using the equation analogous to Eq.
(24) for c'(r,iy,is,kq,kp,j) and then use a generalized fast-
transform algorithni33] to calculaté&’(k,i;, i, ki, ko, j). Us-
ing the equation analogous to E@5) in k space we then
have the coefficienté,*l’l‘;',.‘g(k) for the complete set of indices

031202-5



ZARRAGOICOECHEAet al. PHYSICAL REVIEW E 71, 031202(20095

0.8
2.04 4 T=1.40
" 2'=0.155
1.6 14 T=2.00
— i X 0.6 p*=0.155
S 4 PDF
% 1.2 'I x‘——\{- g
3 ¥ 0 TTTTTTTeTTees £ 0.44
o 9 £
© 08 IR Stillinger o
0.4+ Chemical 0.2
0.0 e o e
{ > 3 : 0.0 i i p .
0 1 2 .3 4 S 0 1 2 3 4 5

FIG. 1. Cluster pair correlation function. Full line and circles  FIG. 2. The pair correlation functions for chemical clusters with
correspond to chemical clusters witfi=1.5 and7 =0.5 as ob- d"=1.5 and7 =0.5 atT =2.0 andp”=0.155. Results from the in-
tained from the integral equation and MD, respectively. Trianglestegral equation theorfull line) and from MD simulation(circles
correspond to Stillinger clusterg”=0) with d"=1.5 as obtained are shown.
from MD. Dashed line is the thermal PDF as obtained from MD.

The system is aT =1.4 andp =0.155. sponding simulation results. In Fig. 1 we also show the clus-

o ter correlation functiongg(ri,) obtained from molecular
and all the values ok on an adequate mesh. The coefficientsgynamics when the Stillinger connectivity criterion, namely
y,.m(K) are then easily calculated by using the OZ-like when 7 =0, is used instead. In addition, the thermal PDF
equation in Fourier spadsee Eq(23)]. Again we assemble g(r,,) from MD is shown as a guide. It should be mentioned
the complete functioy'(k,iy,i,,ky, ko, }) [using the Fourier that the percolation density, for our chemical clusters is
space version of Eq.(24)]. The inverse transform about 0.26 fofT"=1.4 and 0.32 foll"=2.0 according to our
¥ (ra,i1,i2,Ky,ky, ) is calculated with the fast-transform al- simulations. The density” =0.155 corresponds to the perco-
gorithm and so new coefficientﬁl’,‘;ﬂf(rlg) [obtained from lation density for Stillinger clusters at =1.4.

Eq. (25)] are again available to reinitiate the iterative cycle. The qualitative behavior of these curves agrees with the
The iterations end when convergence is reached, as megieneral trends encountered in connectedness studies in con-
sured by tinuum systems. The discontinuity at,=d for Stillinger
(see Fig. 1 as well as for chemical clusters is a typical fea-
|LHR(r 12) Jseayn ieration™ [ V1o e (F12) st ieration] < € ture: the probability for two particles to be connected gt
37) >d, even forr,;,—d", depends on the presence of an inter-
mediate third particle directly connected to the other two and
for the complete set of indices. The tolerancas set to  thus the probability of belonging to the cluster notably de-

0.0001. creases. For clusters defined according to the Stillinger cri-
The pair correlation function for a chemical clusfsee terion(7=0), two particles which are separated by a distance
Eqg. (11)] is finally given by shorter than the connectivity distance belong to the same
Stillinger cluster with certainty. Thus, far,<d, the func-
_ 100 12
GehentT12) = GooolT12). (38 tion ge(ry,) coincides with the ordinary PDE(ry,). As
where the orthonormality conditidisee Eq(A12)] has been expected, the probability density of finding two particles
used. connected according to the chemical criterior#0) is

smaller thangg(ri) for any rq,. This is to be expected

IV. RESULTS AND DISCUSSION 0.8

Following the method of the previous section, we have
solved the integral equatio(8) for a Lennard-Jones fluid 0.6
with a pair potential given by Eq14) and we have calcu-

gchem(r*)

lated the correspondingen(ri) according to Eq(38). In 0.4
order to check the theory, MD simulations on the same sys-
tem have been performed; the simulation details are given 0.24

elsewhere[20]. All the quantities reported here are in re-

duced unitsir’=r/o, p'=po®, T =kgT/e, d'=d/o and 7

=70"e/m for the density, temperature, connectivity dis- °'°0

tance, and residence lifetime, respectively. For the results

shown below we have usetl=1.5 andr =0.5. FIG. 3. The pair correlation functions for chemical clusters with
In Figs. 1-3 we show the theoretical cluster correlationg*=1.5 and =0.5 atT"=2.0 andp”=0.26. Results from the inte-

functions gehenfr12) calculated forp'=0.155, T'=1.4; p°  gral equation theorffull line) and from MD simulatior(circles are
=0.155,T"=2.0; andp"=0.26,T" =2.0, along with the corre- shown.
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2.2 observe that the theoretical curve extrapolated usingri-
able agrees with the simulation data better than the curve

2.0+ obtained by usingy=2, although the theoretical prediction
is slightly shifted to lower densities with respect to the MD

1.8+ prediction. For Stillinger clusters, things are less clear at

L first sight. I-/iowever, if we calculate the mean quadratic

1.6 error, Ap,=\Er(pypeorPsimu)’s We observe thafApgl,-,
<[App]yvariab|9 which suggest that the agreement with the

1.4 MD percolation loci is better when a constant exponent 2 is
used.

B o6 From Fig. 4 we can observe that the predictability of the

‘ p'* ' ’ ’ theory is as good for# 0 as forr=0. However, for values

of 7 much larger than the one shown here, the corresponding

FIG. 4. The percolation loci for clusters withi=1.5. The empty ~ Percolation density will be significantly higher and the ap-

symbols correspond to Stillinger clustdré =0) and the full sym-  Proximation introduced by the potential of mean force in the
bols to chemical clusters with’ =0.5. Circles and squares were €duation of motion will eventually fail. It is worth mention-

calculated from the theory using the power I8Eg. (39)] with y  INg that the deviations observed between MD and the theo-
variable andy=2, respectively. Triangles were obtained from MD. retical results are not entirely due to the approximations in-
The full lines are only a guide to the eye. The dashed line is afroduced in the numerical solution of EG). In practice, in
interpolation to the Monte Carlo coexistence curve obtained by Pa2 MD simulation[20], the percolation density is calculated
nagiotopoulogRef. [39]). as the density at which 50 percent of the configurations
present a percolating cluster. This technique is rather differ-
ent to the extrapolation described above for the theoretical

since a dynamic restriction is required in addition to the geo'prediction of the percolation density.

metrical one. In particular, for,<d, gepen{f12) IS always
smaller than the thermal PDF. The functigg(ry,) in Fig. V. CONCLUSIONS

1 is long ranged because, as mentioned above, the density \ne have numerically solved a connectedness integral
considered in that case corresponds to the percolation densifyation theory that describes clusters where the particle-
for Stillinger clusters at the given temperature. The mearyarticle bonds are identified by setting a connectivity dis-
cluster sizeSgy diverges at that density. tanced plus a lifespanr. The technique used consists in
From these figures we can conclude that, at least for thgypanding the pair correlation functions in orthogonal poly-

densities and temperatures considered, the integral equatigpymials, These same polynomials were considered originally
results reproduce rather well those obtained from MD simuy, the study of the “thermal” correlation function of polariz-

lations. o _ _able molecules. The numerical results within the Percus-
In Fig. 4 we present the gas—liquid coexistence curve ineyick approximation that are obtained here agree rather
the T-p plane obtained by Panagiotopou(@9], using Gibbs  \ye|| with earlier MD simulations, at least at the densities
ensemble Monte Carlo simulations, together with the Percosyydied, in the case of Lennard-Jones particles.
lation loci for the chemical clustersr=0.5 and Stillinger The use of an explicit lifetime for the bonding criterion is
clusters(7=0). These percolation curves separate the phasggpecially important when one tries to compare cluster prop-
diagram in two parts: percolatedigh densitiesand nonper-  erties extracted from the theory with those measured in ex-
colated (low densitie3. They were calculated from our periments. The sol-gel transition in weakly attractive col-
theory using Egs(12) and(13), and also from MD(see Ref.  |giqs for example, is associated with the percolation of the

[20] for details. N _ _ clusters due to weak colloidal interactions. However, if the
To calculate the critical densify, for a given temperature  yransition is measured by linear viscoelastic rheology, the
we use the critical power law position of the sol-gel line depends on the testing frequency
Stnertp) ~ o= pol ™ (39) [42]. High frequencies are able to detect only very short-

lived bonds and clusters whereas low frequencies detect
as an extrapolation formula. The fitting was performed inmore long-lasting bonds and clusters. A discussion on the
two alternative ways(i) fixing the exponent at the valug  relationship between this frequency effect and the chemical
=2, and(ii) allowing y to vary freely. The valuey=2 is the  clusters considered in this paper can be found in F3f.
known mean field critical exponent obtained from the Since MD is a very costly technique to study long lasting
Percus-Yevick approximation when only a geometric restricclusters[20], we expect that our numerical approach will be
tion is required in the cluster definitiq@hich is the case of particularly useful to estimate the percolation line for mod-
the Stillinger cluster$40]). The critical exponeny for Still- erately large values of. Large values ofr are of particular
inger clusters in Lennard-Jones fluids, obtained from MDinterest since they lead to the identification of more stable
simulations, was reported by Heyes and Melrp&H as be- clusters that are easier to detect in experiments.
ing near the universal valug=1.8 observed in lattice sys-
tems. In Fig. 4, the theoretical percolation curves fa10.5 ACKNOWLEDGMENTS
and 7=0 calculated by using the two fitting procedures and We are grateful to lleana F. Marquez for her help in the
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Given the Gaussian form of the weight functié(p), the

APPENDIX: EXPANSION OF THE PAIR FUNCTIONS associated polynomials afa7]

IN ORTHOGONAL POLYNOMIALS

ln— 3y |12 2\ 112 2
The essential point in the integral equation solution Q.(p)= {F(Z(T D+ 1)1;(2)} (B_p) LLEE{)Z,Z(’B—p>,
method[33] is the expansion of all the pair functions, like FGn+h+3) 2m 2m
Y'(r12,p1,p,), in terms of orthogonal polynomials. Here we (A8)
sketch how these expansions follow. First we expand:

where Lﬁ(t) is an associated Laguerre polynomjiaB] and

Y (r12P1,P2) = Y(r,p1, P2 @1, w5) I'(2) is the_ gamma function._ _ _
Accordingly, all the functions im space are expanded in
=4m 2 (P12 Vi m(@D) Y m(@)), the form
I1.lo,m
(A1) yT(r,pl,pz) =4 E TlT;nmz(r)inl (pl)anlz(pz)
ng,Np,l4,lo,m
where w,w,, are the directions of the momengpa and p,, XY, (@) Yy.m(s (A9)
Mm=-m, andm=-1,-1+1, ... ]. In this and similar expres- m 2m
sions, the vector ;, has been implicitly chosen as tlzedi-  where thez axis is along and the summation indices satisfy
rection in the specification of the Euler angltes (6, ¢). The  the constraints
spherical harmonics satisfy the orthogonality condition n=012
Jdlem(w)erm,(w):dwémm, (A2) l=n,n-2,n-4,...,10r0,
so that the coefficients of the expansithl) are immedi- m=0,+1,+2,..., 4. (A10)
ately obtainable as The coefficients of Eq(A9) can be obtained as
1
W1 P1P2) =~ f dwydw, ' (r, Py, P2, 1, @) YR(r) = 4 f dpsdpf(p)T(p2) ¥ (r,p1.p2)
T
xYllm(wl)Yl*zm(wz)_ (A3) X inll(pl)Qn2Iz(pZ)lem(wl)erm(wZ)
Similarly, we can break out the kinetic momentum depen- (AL1)
dence in the form of expansions in polynomialspof with f(p) given by Eq.(A5). The complete orthonormality
- condition is
2m(r PP = 2 7’|1;m2( )Qn,1,(PDQny,(P2), (A4)
2 477f dpf(p)QnI(p)Qn’l’(p)YIm(‘U)Y|rmr(w) = 5nn’5ll’5mm('
which are constructed to be orthogonal with Gaussian weight
function (A12)
The functions ink are expandable in a similar way. Set-
f(p) = 2 m/,B 3,2exp: Bp?2m], (A5)  ting thez axis alongk, we write
tniny
namely, YVkpup)=4m 2 HRKQn, (P)Qny,(P2)
ny,Np,l4,lo,m
4 f dp PHPIQu(PIQmI(P) = 8wy, (AB) XVim(©02)Yim(2) (A13)
0

However, the anglesq,w, are referred to different axes in
The coefficients of the expansion are then again obtainablEgs.(A9) and(A13), so that the coefficients in these expan-
by quadratures, sions are not themselves mutual Fourier transforms.
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